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Running Head: Metaphor comprehension

Abstract

Metaphor comprehension involves an interaction between the meaning of

the topic and vehicle terms of the metaphor. Meaning is represented by

vectors in a high-dimensional semantic space. Predication modifies the

topic vector by merging it with selected features of the vehicle vector. The

resulting metaphor vector can be evaluated by comparing it with known

landmarks in the semantic space. Thus, metaphorical predication is treated

in the present model in exactly the same way as literal predication. Some

experimental results concerning metaphor comprehension are simulated

within this framework, such as the non-reversibility of metaphors, priming

of metaphors with literal statements, and priming of literal statements with

metaphors.
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The rich body of experimental results that has appeared in the psychological

literature in recent years (for reviews, see Cacciari & Glucksberg, 1994; Gibbs, 1994a)

has changed our understanding of how non-literal statements such as metaphors are

comprehended.  Prior to that work the dominant view was that the comprehension of non-

literal statements involves two steps: first, it must be recognized that the statement makes

no sense if interpreted literally; then its intended, non-literal meaning is computed by

some kind of inference. Now we know that, instead, metaphors can be understood

directly, like literal statements. A computational model of literal comprehension should

therefore be able to understand metaphorical statements in the same way that it

“understands” literal sentences.

In this paper I shall sketch a computational model of metaphor comprehension

that treats metaphors in the same way as literal statements.  I introduce this model with an

example that Glucksberg used to present his view that metaphorical predication is

basically the same as literal predication (Glucksberg, 1998).  According to Glucksberg,

the metaphor My lawyer is a shark is a regular class-inclusion assertion, except that  “the

metaphor vehicle (shark) is used to refer to the superordinate category of predatory

creatures in general, not to the smaller, concrete category of marine creatures that is also

named shark” (Glucksberg, 1998, p. 41). Thus, the metaphorical shark-properties  -

vicious, predatory, aggressive, and tenacious - are attributed to lawyer, but the literal

shark-properties  - fast swimmer, has fins, has sharp teeth, has leathery skin, has gills –



4

are not. The goal of the present paper is to show how such a process can be realized

computationally.

Glucksberg’s discussion fairly summarizes the empirical evidence on metaphor

comprehension, but is incomplete in one important way: how do we know what is a

superordinate-category level and what is a basic-level property?  After all, the basic-level

shark is a member of several superordinate categories, and Glucksberg's intuitive choice

of the right one (predatory creatures, instead of, for example, fish) is unsatisfactory from

a computational standpoint. A model of comprehension must select the right features

automatically, without having to be told what is relevant and what is not.

Metaphorical Predication1

If metaphors are understood by people in much the same way as literal sentences,

then metaphorical predication becomes a special case of predication in general. In this

paper, a general computational theory of predication, which has recently been proposed

by Kintsch (submitted), will be applied to simulate metaphor comprehension.  This

theory has two basic components: a model of human knowledge structure provided by

Latent Semantic Analysis (LSA), and a model of text comprehension, the construction-

integration (CI) model. LSA is a method for automatically constructing a high-

dimensional semantic space from the analysis of a large amount of written text. An

introduction and further references are given by Landauer, Foltz, and Laham (1998). The

CI model is a psychological model of text comprehension that has been applied in a wide

variety of situations  (Kintsch, 1988; 1998). The theory presented below is an extension
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and elaboration of Kintsch (1998, Chapter 5) and introduces a new way of modeling

predication within the context of the CI – LSA framework (Kintsch, submitted).

LSA (Landauer & Dumais, 1997) is a contextual theory of meaning in that it

represents the meaning of a word by its relationships to other words in a semantic space.

To construct this semantic space, it analyses word co-occurrences in a large number of

written documents. Specifically, the semantic space used in all the examples below is

based on a corpus of some 37,000 documents containing over 92,000 different word

types - a total of about 11 million word tokens. From this statistical input LSA generates

a high-dimensional semantic space by means of a mathematical technique called singular

value decomposition, followed by dimension reduction.  Thus, while the input to LSA

consists of occurrence patterns over contexts, LSA does not represent meaning in terms

of co-occurrence frequencies, but as vectors in a semantic space of 300-400 dimensions.

The technique is related to factor analysis, but the dimensions of the space have no

interpretation.  The meaning of a word or sentence is represented by a vector of 300

numbers. This 300-dimensional space suffices to reconstruct not the accidental detail but

the essential features of the original co-occurrence matrix   and allows us to represent the

meaning of arbitrary combinations of words and to compare them.

To find out whether an LSA vector correctly represents our semantic intuitions,

we must compare it with other vectors.  For instance, to determine whether the vector for

a word means what it is supposed to mean, we can compare it with other words -

landmarks  - that we know to be related to it as well as with landmarks that we know are

unrelated.  We select these landmarks by our human intuition about the meaning of words

and sentences; the question is whether LSA has the same kind of intuitions. Thus, we can
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compare the vector for the word shark with landmarks such as fins, dolphin, diver, and

fish as well as some unrelated words. A quantitative measure of how close one vector is

to another in the LSA space is given by the cosine between two vectors - a measure that

can be interpreted in much the same way as a correlation coefficient.  The cosines for

shark and fins, dolphin, diver, and fish are .74, .74, .70, and .69, respectively. For

comparison, the cosine between shark and lawyer is -. 01.2

LSA successfully captures one aspect of meaning - the semantic distance among

words. Of course, LSA, like any scientific theory, is not the real thing – not meaning, but

a model of meaning. Furthermore, it is an incomplete model.  It models only those

aspects of meaning that are coded verbally; human meaning is derived from perception

and action as well as words. However, language has evolved to talk about perception and

action, and one should not underestimate the power of the word to encode the human

world. In addition, LSA has other limitations.  For instance, it fails to explain the nature

of the relation between shark and its neighbors – that is, how we understand that a shark

has fins, looks like a dolphin, is a danger to divers, and is a fish. Neither does LSA

distinguish a shark is a fish and the fish is a shark. Thus, LSA is not a complete model of

meaning, but the fact that it allows us to compute automatically a quantitative measure of

the relatedness between these terms is useful nevertheless. LSA can be an essential

component of a psychological theory of meaning in that it provides a model of

knowledge structure and a model of knowledge acquisition, based on tracking data about

usage in the environment. But it needs to be combined with psychological process models

of comprehension and thinking so as to achieve a full account of psychological

semantics. In the present paper, LSA is paired with the CI model of text comprehension.
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This does not provide answers to all questions (e.g., it does not address the first of the

limitations of LSA noted above – distinguishing between different types of relations) but

it does solve some problems (e.g., the second of the limitations discussed above – the

asymmetry of arguments and predicates).

Vectors are the elements of an LSA semantics. The standard composition rule in

LSA is the centroid rule, which says that the vector representing a set of words is the

centroid of the individual word vectors. This rule is order insensitive. Nevertheless, in a

large number of applications of LSA the centroid rule has proven to yield very useful

results.3 But the centroid rule is inadequate in many cases; one of the cases where the

centroid rule fails is metaphorical predication.  To use Glucksberg's example, if we

compute the centroid of lawyer and shark, we land in a semantic no-man's land -

somewhere in between lawyer and shark. Furthermore, composition by the centroid rule

could not distinguish between My lawyer is a shark and My shark is a lawyer.

Kintsch (submitted) has argued that if we predicate something about a concept,

not all the features of the predicate are combined with the meaning of the concept, but

only those appropriate for that concept.  Thus, different features of run play a role in The

horse runs and The color runs. The argument  - horse, or color - selects those features of

the predicate that are appropriate for that argument, thus generating a contextualized

word sense - the sense of run combined with horse, or the sense of run combined with

color. That is all there is to metaphoric predication too: the argument selects those

features of the (metaphoric) predicate that are appropriate for it and inhibits the features

that do not apply or apply less aptly.
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Consider the example from Glucksberg (1998), My lawyer is a shark. In his

illustrative example Glucksberg lists nine features of shark, the first four of which are

appropriate for the metaphor and enter its meaning, whereas the last five are irrelevant

and are suppressed: vicious, predatory, aggressive, tenacious, fast swimmer, fish, sharp

teeth, leathery skin, and gills. In fact, according to LSA, the last five, to-be-suppressed

features are much more strongly related to shark (their average cosine with shark is .28)

than the metaphor relevant features (their average cosine is .06), but when they are

combined with lawyer, the typical shark features will be suppressed because they are

unrelated to lawyer (their average cosine with lawyer is .01), and the atypical shark

features will be emphasized because they are at least somewhat related to lawyer (their

average cosine with lawyer is .08). The model proposed here provides a computational

algorithm that achieves this result. However, instead of describing the model in the

context of Glucksberg's example where the predicate features to be considered were

selected intuitively to make a point, the model will be described in its general case, which

does not require an intuitive selection of features and is fully automatic.

The predication algorithm selects neighbors of a predicate that are related to the

argument of the predication that are used to modify the predicate vector in order to make

it context sensitive. It uses a spreading activation process in the manner of the

construction-integration model to select among the terms in the LSA space that are

related to P those that are also related to A, and then uses these terms to augment  the

vector representing the meaning of the metaphor.  The general conceptual scheme will be

described first, and then a computational approximation will be presented.  The general

scheme has the advantage that it makes clear just how the CI-model is combined here
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with LSA. The approximation does not employ the CI-model directly, but simplifies the

computations significantly and  yields equivalent  results.

The predication algorithm first selects terms from the LSA space that are related

to the predicate P, and then selects from this set those terms that are also related  to A.

The first step is achieved by computing the semantic neighborhood of P. The complete

semantic neighborhood of a predicate P in the semantic space is a 300-dimensional

hypersphere around P in which all 92,000 items in the semantic space are arranged

according to their relationship with P. Items which have a high cosine with P will be near

P, and items farther away are less and less related to P. In fact, most items will be at the

periphery of the hypersphere centered on P, because they are essentially unrelated to P.

One can order all the items in the space according to their cosine with P, generating a list

of m words ordered in terms of their cosine with P.4

The second step involves constructing a spreading activation network in the

manner of the construction-integration model.   The network consists of A, P, and the m

closest neighbors of P. Each term is connected to both P and A with a link strength

corresponding to the cosine between the two nodes. In addition, each term is connected

by an inhibitory link to every other term in the network. The strength of the inhibitory

links are chosen in such a way that the total sum of all positive and negative links in the

network is equal. If activation is spread in such a self-inhibitory network with the

activation values of P and A clamped at 1, most nodes will become deactivated and only

those nodes related to both P and A will attain a positive activation value.
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Finally, the k nodes with the highest activation values will be used to compute the

vector representing the meaning of the metaphor. Specifically, the predication vector will

be the centroid of A, P, and the k most highly activated terms of the network.

In actual computations, an approximation which greatly simplifies computations

is employed for the second step described above. The sequence of steps in the

computation of a predication vectors is therefore as follows:

1. Compute the semantic neighborhood  of P of size m, as described above. For

metaphors, m has to be fairly large (500 < m < 1500) because the predicate and argument

in a metaphor often are quite unrelated.5  This step assures that all terms that enter into

the predication are in fact related to P.

2. The next step picks those terms from the neighborhood of P that are also related to A.

The cosines between the m neighbors of P and A are computed and the k terms with the

highest cosine are selected. This step obviates the need for setting up a huge self-

inhibitory network and yields much the same results because there are usually only a few

items related to both P and A and these would be selected in either case.

3. It is not necessarily the case that terms related to both P and A exist. Thus, in order to

avoid introducing noise by selecting the strongest terms even when their absolute strength

is low, the terms selected must have a cosine with P and A above some minimum

threshold. Only terms that have a cosine with P greater than two standard deviations

above the mean for all words in the space used here (.02 + 2*(.06) = .14) will be included

among the to-be-considered items. Similarly, all terms related to A with a below-

threshold cosine (<.14) will be eliminated.
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4. The vector representing the meaning of the metaphor can then be computed as the

centroid of A, and the terms selected above (P and the k terms from the neighborhood of

P, subject to the restriction that their cosine with A is above threshold).

The centroid of A and B is the same as the centroid of B and A. Predication, in

contrast, is basically asymmetric:  if B is predicated about A, terms from the

neighborhood of  B that are compatible with A are used to modify the predication vector;

but if A is predicated about B, terms from the neighborhood of A are used in Step 1 of the

procedure.

Figure 1.

The predication algorithm yields a vector that needs to be interpreted by

comparing it with suitable landmarks. In Figure 1 the vector for My lawyer is a shark is

compared with six relevant landmarks. The vector was computed with k = 5 and m = 500.

For these parameter values, the neighbors of P that were selected by the predication

algorithm have an average cosine with P of .30 (range .27 - .35) and an average cosine

with A of .20 (range .16 - .26). Thus, they are moderately strongly related to both P and

A. The first three landmarks were chosen to be related to lawyer (the bars in Figure 1

show the magnitude of the cosine between each landmark and the single word lawyer);

the second set of three landmarks was chosen to be related to shark - the first two items to

the here inappropriate fish-sense of shark, and the third to be appropriate for the

metaphor.   Other landmarks similarly related to lawyer and shark could have been used.

According to Figure 1, predicating shark about lawyer does not change the sentence
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meaning with respect to the lawyer-landmarks, but introduces a little fishiness and,

primarily, moves the sentence meaning toward viciousness.

For lower values of m, the predication procedure fails: for m = 100, the meaning

of lawyer is not modified at all because none of the 100 closest neighbors of shark have a

cosine with lawyer that is greater than .14, the threshold value. For larger values of m

(e.g., m = 1000 or 1250) essentially the same results are obtained as in Figure 1. For m =

1500, the algorithm begins to pick up too many fish-properties and the cosines with the

landmarks shark and fish increase. At this point, the predication algorithm begins to

converge with the centroid rule. The centroid of lawyer and shark behaves very different

with respect to the landmarks in Figure 1 and clearly fails to represent the meaning of the

metaphor: it is closer to the shark and fish landmarks (the cosines are .83 and .58,

respectively) than either to viciousness or to the lawyer-landmarks6.

In accordance with the claims of Glucksberg (1998), Kintsch (1998), and others,

there is no difference in this theory between predication in the literal and metaphorical

sense. For example, consider the literal statement My lawyer is young. The vector

representing that sentence can be calculated with the same predication algorithm. For m =

50 and k = 5 the results shown in Figure 2 are obtained (they hardly change at all with

changes in parameter values). Figure 2 uses the same landmarks for lawyer plus three

new ones appropriate to the predicate. The results are interesting and contrast sharply

with Figure 1. What we get is pretty much a straight combination of lawyer and young -

there are no emergent features, no suppression, no surprises (indeed, the centroid of

lawyer and young is not much different than the predication vector). When we say My
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Lawyer is young, we say little more than that person is young; none of the associated

properties of young emerges as an important factor in determining the sentence meaning.

Figure 2.

When is a sentence a metaphor, when is it a literal statement, and when is it just

plain meaningless? Further research within the framework proposed here might yield

some novel answers, but at present only a few hints can be offered here. Figures 1 and 2

illustrate one important difference between metaphors and literal statements: for the

latter, argument and predicate are usually related in that many features of the predicate

apply to the argument; the predicate selects and emphasizes one or more of these

potential features of the argument. In metaphors, only a few features need to be related.

In the case of My lawyer is a shark, topic and vehicle are not related at all by LSA (their

cosine is -. 01). But for some metaphors, topic and metaphor can be related.  For instance,

of the 12 metaphors used in one esperimental study  (Blasko & Connine, 1993), topic and

vehicle were unrelated by LSA in only two cases, while for the other 10, the cosine

between topic and vehicle was appreciable, ranging from .07 to .19. These were

metaphors such as Rumors were plagues, cos(rumors, plagues)  = .15, or The rocket was

a bullet, cos(rocket, bullet) = .16. These metaphors seem different in an important way

from metaphors in which topic and vehicle are unrelated and seem more like literal

statements. Rumors were plagues primarily attributes to rumor the feature plagues, plus

some features associated with plagues (like spreading), much like a literal statement. Of

course, not all features of plagues are attributed to rumors by the metaphor, but not all
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features of the predicate are attributed to an argument in literal predication either. For

instance, The color runs is perfectly literal (it is listed as an example for one of the senses

of run in WordNet), but only a judicious subset of run-features are attributed to color by

this statement: we don’t think that the color runs like a machine, gallops like a horse, or

moves through the tree like a breeze!  The question deserves to be explored more

systematically, but it may be the case that for “real” metaphors, vehicle and topic are

unrelated, whereas most of the Blasko and Connine examples might be regarded as

intermediate forms between true metaphors and literal statements.

In order to assess the generality of the predication model, seven additional

metaphors were analyzed. To avoid selection effects, the first seven examples of nominal

metaphors cited in a well-known experimental paper (Glucksberg, Gildea & Bookin,

1982) were used for this analysis. However, the examples in Glucksberg et al. were all

changed from plural forms (Some salesmen are bulldozers) to singular form (The

salesman is a bulldozer) because many of the words involved were low frequency words

and a preliminary analysis showed that LSA knew more about their singular forms than

their plurals (e.g. bulldozers does not appear in the space used, but bulldozer does). The

seven metaphors were This job is a jail; Her marriage is an icebox; The salesman is a

bulldozer; Her heart is a closet; The flute is a bird; The road is a snake; and My surgeon

is a butcher.  The analysis was performed exactly in the same way as described above for

the My lawyer is a shark example, that is with m = 500, k = 5.7 Each vector computed

with the predication procedure was compared with two landmarks, one relevant to the

intended meaning of the metaphor, and one irrelevant to the metaphor but strongly related
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to another aspect of the predicate. Where possible these terms were selected from the

dictionary definition of the predicate term.

The analysis yielded intuitively reasonable results in six out of the seven cases.

The mean cosine between the predication vectors and the relevant landmarks was .36,

whereas the mean cosine between the predication vector and the irrelevant landmark was

.22 The lawyer-example shown in Figure 1 falls well within the range of these examples.

In all six successful cases the cosine for the relevant landmark was greater than the cosine

for the irrelevant landmark.  This contrasted sharply with computations using the centroid

of the argument and predicate as the vector representing the meaning of the metaphor: the

cosines between the centroids and the relevant and irrelevant landmarks were

approximately equal, .32 and .30, respectively.  Thus, the predication algorithm

selectively emphasizes appropriate semantic features of a metaphor, whereas the centroid

imports relevant as well as irrelevant features of the predicate.

The predication procedure failed for the metaphor Her marriage is an icebox; the

cosines between this metaphor and the relevant landmark cold and the irrelevant

landmark refrigerator were both .03. There may be two reasons why predication failed in

this case. First, LSA has very little information about icebox (vector length = .12, the

lowest value in all examples), so that the neighborhood of icebox was rather vague and

noisy. In addition, marriage is not related to cold and its synonyms in the LSA space

used here, resulting in a failure of the selection mechanism. This lack of knowledge on

the part of LSA is not totally surprising: the General Reading Space used here was

constructed from a corpus consisting of the reading materials of an average high school

student. It remains to be seen how well real high school students understand these
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metaphors. However, in future work, care must be taken to use words about which LSA

is reasonably well informed; if the knowledge base is not there, the predication algorithm

has nothing to work with.

The examples from Glucksberg et al. are, presumably, all examples of strong

metaphors. What strong metaphors seem to have in common is that the predicate is a

concrete term, rich in imagery and potential associations, and that the argument and

predicate are relatively unrelated.  The richness of the predicate allows the argument to

resonate with several different features at the same time, resulting in a complex, if fuzzy,

interpretation.  The unrelatedness between the argument and predicate has surprise value.

A strong the metaphor is something unusual, a pleasant surprise. But it cannot be too

much of a surprise. The semantic feature that was emphasized by the metaphor must

already be inherent in the argument, even if at a low strength. In all cases were LSA

yielded satisfactory interpretations, the argument and the relevant landmark were not

completely unrelated. Thus, the effect of the predication was to emphasize some dormant

but potential feature of the argument.

Experimental Findings on Metaphor Comprehension

The model proposed here not only can compute intuitively reasonable

interpretations of metaphors (and literal statements), but it also provides an account for

some of the major phenomena that have been studied in the experimental literature.

Glucksberg (1998) serves as a good guide as to what these phenomena are.
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1. Metaphors are in principle non-reversible.  This is actually a claim that needs

explanation.  It really means two things:

(a) Some metaphors when reversed change their meaning. For example, My

surgeon is a butcher and My butcher is a surgeon are both good metaphors but mean

quite different things. This is not a problem for the present model, for in the one case

properties of butcher are attributed to surgeon, and in the other properties of surgeon are

attributed to butcher, as shown in Table 1.

Table 1

(b) Some metaphors become meaningless when reversed.  For instance, one can

say My job is a jail but not *(My) jail is a job. As always, however, the linguistic practice

of starring sentences can be debatable; it is certainly possible to construct a scenario in

which (My) jail is a job might be meaningful. It is obvious, however, that the original

version of the metaphor is better than the reversed version. How can the model account

for this?

Showing that something makes no sense is difficult. We can show that the

metaphor in its original form does make sense: My job is a jail brings the sentence vector

closer to officer and lawyer, which seems right intuitively. But Jail is my job emphasizes

hired and boss  - which at least to my intuitions isn't so bad either.

The theory is a laser beam highlights the laser-beam -properties precision and

light. The reversed metaphor doesn't highlight typical theory-properties such as
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explanation and hypothesis. Similarly, People are sheep successfully transfers the sheep-

property follow to the sentence vector, while Sheep are people does not import people

properties such as man.

Thus, the model agrees with our intuitions about reversed metaphors, but offers

no clear way to reject nonsensical sentences. In all examples above, there are terms in the

neighborhood of the predicate that are related to the argument. In any case, it is obviously

possible to predicate nonsense even about highly related words. Analyses that go beyond

LSA and the CI-model may be needed at this point (as they are surely needed for other

problems, too, e.g., the determination of what is a predicate and what is an argument in a

sentence, which is a precondition for the predication algorithm, but outside the present

scope of LSA).

2. Bringing to mind the literal meaning of a metaphor vehicle has a deleterious

effect. To compute a metaphor vector, we construct a network out of the neighbors of the

predicate P, which are linked to the argument A by their cosine values and inhibit each

other. Initially, all nodes except A and P (the knowledge to be activated) have zero

activation value, but activation flows into these nodes from A and P (the words of the

sentence that need to be interpreted). It requires several cycles of spreading activation in

such a network before the activation values of the nodes stabilize. In isolation, My lawyer

is a shark takes six iterations to settle. If Sharks can swim precedes the metaphor, the

priming sentence will activate the neighborhood in a certain pattern, emphasizing the

literal meaning of shark. That is, the neighbors of P will start with some positive

activation value, depending on how strongly related they are to sharks can swim. Thus,



19

the metaphor must be comprehended in the context of the priming sentence and the

knowledge activation it produces.

Figure 3

Instead of the whole set of neighbors of shark, the illustrative properties noted by

Glucksberg (1998) are used in Figure 3 to keep the example simple. To integrate the

above network the lawyer node is clamped at 1; lawyer and shark-can-swim are assigned

a starting value of 1, whereas all other nodes have a starting values of 0; where links are

shown in Figure 3, their strength is equal to the cosine between the respective nodes; in

addition, there are links among all nine context nodes which were assigned a negative

link strength in such as way that the absolute value of the total sum of the positive links

equals the total sum of the negative links. Settling in this network requires 8 cycles,

compared with 6 when the metaphor is understood out of context. That is not an

impressive difference. But if one looks at the time course of integration, the experimental

finding of slower comprehension with the prime becomes more understandable. In Figure

4 we see that if the metaphor is processed out of context, the lawyer relevant attributes

dominate the integration process from the very beginning.  In contrast, with the prime

sharks can swim, the shark-specific attributes are stronger initially, and it takes several

integration steps before this pattern is reversed. The final outcome is the same as without

the prime, however. This agrees with the experimental findings of Glucksberg,

Manfredini, and McGlone (1997) that people take more time to understand the primed

metaphor, but arrive at the intended interpretation eventually.
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Figure 4

3. Understanding a metaphor is like understanding any polysemous utterance.

Compare A rock fell off the mountain and The family is a rock. The former is a literal

statement, the latter is a metaphor. In both cases the meaning of rock must be computed

in context, with quite different results. This is no different from computing one meaning

of bank in the context of money and another meaning in the context of river. Rock (or any

other word) takes on a slightly different meaning in each new context (Kintsch, 1998,

Chapter 3).

Computing a meaning always involves activating context appropriate features and

inhibiting or deactivating inappropriate features. Therefore, if some features have been

deactived and others strengthened in one context, and the context is changed, so that the

deactivated features now become relevant and the activated features are irrelevant, it

should take longer to form a stable meaning according to the CI-model than when no

change in meaning is required. That is what was observed in an experiment by

Gernsbacher, Keysar, and Robertson (1995).  These authors have shown that literal

statements are verified more slowly following a metaphor prime than following a literal

prime. Their experimental design and their results are sketched below:

PRIME: VERIFICATION STATEMENT: REACTION TIME:

my lawyer is a shark sharks are good swimmers slow

the hammerhead is a shark sharks are good swimmers fast
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The model predicts these results. The simulation is the reverse of the previous

example. Sharks are good swimmers is clamped and must be interpreted either in the

literal or metaphorical context.  The results of the simulation are shown in Figure 5. In

the context of the literal prime, Sharks are good swimmers requires 9 integration cycles

to settle, versus 11 in the context of the metaphorical prime. However, Figure 5 shows

that the metaphorical prime initially activates context irrelevant features, so that their

activation is actually higher than the activation of relevant features. It requires several

cycles before this interference is overcome.  Eventually, of course, Sharks are good

swimmers is understood correctly, but as Gernsbacher, Keysar, and Robertson (1995)

observed, it takes more time to so.

Figure 5

The Predication Algorithm and Theories of Metaphor

The most salient result of the experimental psycholinguistic research on metaphor

has been the finding that metaphors are understood directly, much like literal statements

- a result widely accepted today.  The model proposed here embodies this premise.

Indeed, the predication algorithm applies in the same way to literal and metaphorical

predication.  Several current theories of metaphor comprehension share this premise. For

instance, this assumption is central to the theory of Glucksberg and Keysar (1990) and

Glucksberg (1998). But Glucksberg's category inclusion theory of metaphors goes further
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than that, in that it postulates the creation of abstract categories for which the vehicle of

the metaphor serves as a token (shark as a token for the category predatory creatures).

This may or may not be a good description of the predication algorithm proposed here:

Glucksberg’s theory requires a mechanism by means of which the topic of the metaphor

is assigned to a newly created category. The vehicle of the metaphor names this category

and also serves as the prototypical, defining member of that category. The predication

algorithm is consistent with such a theory (if one accepts a very broad definition of the

notion of category), but it certainly does not require it. Similarly, the present

computational model is consistent with other theories of metaphor, without being

dependent on them. For instance, Ortony's salience-imbalance theory  (Ortony, 1979)

defines metaphors in terms of particular relationships between topic and vehicle: a good

metaphor is obtained when a property is associated with both the topic and the vehicle,

but it is more salient in the vehicle, or when a term has low associations with both. There

is nothing in the present model that restricts interpretations to these cases, but further

research with the predication algorithm might show to what extent Ortony's claims can be

substantiated.

It might seem that the present model is a member of the class of semantic feature

models that treat metaphors as a comparison in the tradition of Aristotle and I. A.

Richards (for a discussion, see Gibbs, 1994b). In this view, the inadequacy of which has

been pointed out by Gibbs (1994b) and others, a feature associated with the vehicle is

transferred to the topic. For instance, the feature fierce of wolf is transferred to man by

the metaphor Man is a wolf, resulting in a meaning much like the literal statement Man is

fierce. A problem with this view is that often there is no pre-existing association between
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the transferred feature and the vehicle. Gibbs (1994b) discusses the example That girl is a

lollipop, which presumably means something like That girl is frivolous. Frivolous,

however, is not a pre-existing association of lollipop, so there is nothing to transfer.

Gibb’s criticism is to the point, but the present model is much more complex than

the semantic feature theory he discusses. Indeed, it might be considered as a realization of

the interactive theory of metaphor comprehension favored by modern scholars. It is not at

all necessary that a feature emphasized by the metaphor be directly associated with the

vehicle term. Indeed, this need not be the case: for That girl is a lollipop there is no pre-

existing LSA relationship between the vehicle lollipop and frivolous (cos = .01), but

nevertheless the meaning vector for the metaphor moves closer to frivolous (cos = .16)8.

Why? Because the meaning vector is related to other terms which in turn are related to

frivolous – e.g., to friendly (cos = .41), smiled (cos = .80), or carnival (cos = .39). The

model thus does not pick out pre-existing associations, but rather merges two semantic

neighborhoods.  This merging is extremely selective and context sensitive, however, in

that only the relevant terms are merged and the numerous irrelevant ones are suppressed.

Somewhat related ideas are discussed by Gibbs (1994b) in terms of semantic fields.

While LSA neighborhoods do not look much like the semantic fields linguists and

philosophers have discussed (semantic neighborhoods are unstructured and not always

intuitively interpretable), the analogy with semantic fields helps to differentiate the

present model from the discredited semantic feature theory.

Thus, metaphors do not transfer a single feature, or even a small set of features,

but rearrange a whole semantic field. This makes it difficult to evaluate some of the

proposed theories of metaphor, such as Ortony's theory mentioned above, with the
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methods developed here. If My lawyer is a shark meant My lawyer is vicious, the task

would be simple: we compute the cosine between vicious and both topic and vehicle, and

see whether the relationship Ortony proposed holds.9 But the meaning of a metaphor

involves a restructuring of the semantic space, which is more difficult to capture than

simple feature transfer.

No claim is made that the mechanism of the present model is the only one

involved in metaphor comprehension.  There are metaphors that demand more controlled

analysis, especially literary metaphors, for example, in terms of analogical reasoning.

Indirect comprehension of metaphors must certainly be possible: people can, and

sometimes do, speculate about the meaning of a metaphor. It is also possible that

judgements of the aptness of metaphors might involve processes other than those

involved in comprehension. There are no reasons why the present model would be

incompatible with additional processes that might also play a role in metaphor

comprehension.

Conclusions

The predication model of metaphor comprehension described here has three

components. First, LSA provides a model of human knowledge that is objective and

quantitative and can be used as the basis for a computational theory. Second, the CI

theory is a suitable cognitive architecture for modeling the dynamics of comprehension.

It allows us to adapt the general, context independent knowledge space of LSA to a

particular context, in effect selecting from a large number of potential features of the

vehicle precisely those that apply to the topic. Third, it offers a specific model of
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metaphor comprehension, by assuming that metaphoric predication works just like literal

predication. None of these three components is new. LSA has been used to model human

knowledge before (Landauer & Dumais, 1997); the CI architecture has provided the

framework for a number of successful models of comprehension processes (Kintsch,

1998); and the claim that literal and metaphoric predication are alike has been supported

by a number of researchers (e.g., Kintsch 1998, Chapter 3; Glucksberg, 1998; for more

detail see the review articles cited earlier). What is new here is how these three

components have been conjoined into a computational theory of metaphor

comprehension that yields intuitively reasonable interpretations of metaphors and that

accounts qualitatively for some of the major experimental results that have been obtained

in this field.

As important as these results on metaphor comprehension are, it should not be

overlooked that what has been proposed here is a general computational theory of

predication in the LSA/CI framework. The early work on the CI model is entirely based

on hand coding of propositions and the model had no objective way of modeling

knowledge activation. LSA by itself does not distinguish between the roles of vehicle and

topic, nor predicate and argument.  In the present model, however, A is a B and B is an  A

are no longer (necessarily) the same. To explore the full implications of this model for

predication is beyond the scope of this paper (but see Kintsch, submitted). Nevertheless,

by showing how metaphor comprehension can be modeled, a further step has been taken

towards the goal of an LSA-based computational model of language processing.  The

ability of LSA to represent human knowledge on a large scale provides exciting

possibilities that need to be exploited.
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Figure 1. Vectors for Lawyer and My lawyer is a shark compared to six

landmarks.

Figure 2. Vectors for Lawyer and My lawyer is young compared to six

landmarks.

Figure 3. Properties of shark (after Glucksberg, 1998) related to the literal

priming sentence Sharks can swim and to lawyer. Dashed lines

indicate inhibitory connections, bold lines indicate strong links.

Figure 4. The difference in the sum of the activation values for appropriate

and inappropriate properties of My lawyer is a shark in isolation

and preceded by the literal prime Sharks can swim as a function of

integration cycles.

Figure 5. The difference in the sum of the activation values for appropriate and

inappropriate properties of Sharks are good swimmers preceded by the literal

prime or metaphorical prime as a function of integration cycles.
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Table 1. The cosines between surgeon, butcher, My surgeon is a

butcher and My butcher is a surgeon and two landmarks, scalpel

and axe.

scalpel axe

surgeon .29 .05

butcher .01 .37

My surgeon is a butcher .10 .42

My butcher is a surgeon .25 .26



31

Footnotes

This research was supported by grants from the Army Research Institute and the J. S.

McDonnell Foundation. I thank Tom Landauer, Eileen Kintsch, Dave Steinhart  and the

other members of the Colorado LSA Group for their help, comments,  and stimulating

discussions.



32

0

0.5

1

co
si

ne

la
w

ye
r

ju
st

ic
e

cr
im

e

sh
ar

k

fi
sh

vi
ci

ou
sn

es
s

Landmarks

My lawyer is a shark

Lawyer



33

0

0.5

1

co
si

ne

la
w

ye
r

ju
ry

cr
im

e

yo
un

g

in
fa

nt ag
e

Landmarks

My lawyer is young

lawyer



34



35

-1

-0.5

0

0.5

1

1.5

2

 a
pp

ro
pr

ia
te

-m
in

us
-i

na
pp

ro
pi

at
e

0 2 4 6 8 10

Cycles

metaphor alone

metaphor with 
literal prime



36

                                                  
1 The discussion in this paper is restricted to attributional metaphors of the form "A is P,"

where A is the topic of the metaphor  (the argument of the underlying proposition) and P

is the vehicle of the metaphor (the predicate of the proposition). The theory presented is a

general one, however, and the extension to other forms of simple predication is

straightforward.
2  All computations are based on the General Reading Space with 300 dimensions  and

can be performed at the LSA web site, http://lsa.colorado.edu. In general, only the

relative values of cosines are readily interpretable, but not their absolute values.
3  LSA has proven to be a powerful tool for modeling psychological phenomena such as

simulating the rapid acquisition of vocabulary (Landauer & Dumais, 1997),

categorization (Laham, 1997), the analysis of textual coherence (Foltz, Kintsch, &

Landauer, 1998) and practical applications requiring the representation of meaning, such
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as essay grading (Landauer et al.,1997), helping students to write summaries (E. Kintsch

et al., in press), selecting instructional materials suitable for a student's background

knowledge (Wolfe et al., 1998), and selecting personnel with the knowledge required for

specific jobs (Laham et al., in press).
4 The Nearest-Neighbor/term program available at the LSA web site does exactly that.
5 For literal sentences, much smaller values of m are sufficient, e.g. m = 20 (Kintsch,

submitted).
6 The centroid of lawyer and shark reflects shark-properties more strongly than lawyer

properties because  the length of the shark vector is greater than the length of the lawyer

vector (.87 versus .57, respectively). That is, LSA knows more about shark than about

lawyer, and this greater knowledge biases the average in favor of shark.
7 The General Reading Space includes some very rare words, as well as a few

misspellings and word fragments. Only words that could be found in the American

Heritage Dictionary were included in the analysis.
8 Calculations are based on a semantic neighborhood of lollipop of size 50, which yielded

23 terms related to girl.
9 In fact, vicious is more closely related by the cosine measure to lawyer than to shark -

but that may be an idiosyncrasy of the General-Reading space used here for the LSA

analysis, which is trained more on biology texts than on horror stories.


